[107]. Lan Xiao, Wenhua Yu, Hao Huang*, Aimin Wu, Xiaozhe Jin, Preparation and Performance of TiS3 Nanoflakes as Anode Material for Lithium-ion Batteries, Chinese Journal of Materials Reserch, 2022, 36(11):821-828.
Release time:2023-06-19 Hits:

Abstract: TiH1.924 nanometer powder was prepared by DC arc method, and then taking TiH1.924 as precursor,TiS3 nanometer flakes with laminar structure was prepared by solid-gas reaction. The structure and performance of TiS3 nanoflakes as anode material for lithium-ion batteries were characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), Raman spectroscopy and performance testing. The performance of TiS3 nanoflakes as anode for lithium-ion battery was also investigated. The results show that the TiS3 nanoflake has a special nano-laminar structure, and its thickness is about 35 nm. The lithium-ion battery using TiS3 nanoflakes as anode material has good electrochemical performance with the remained capacity of 430 mAh/g after 300 cycles at a current density of 500 mA/g. When the current density is 5 A/g the discharge capacity is 240 mAh/g and when the current density is restored to 100 mA/g, the discharge capacity is stable at 500 mAh/g. The good magnification properties of TiS3 are due to its special nano-flake structure. The mono-laminar structure can better adapt to the volume change caused by the strain in the process of multiple discharge/charging at high current density, so as to prevent the electrode from crushing.


DOI: 10.11901/1005.3093.2021.281